course of phosphoryl transfer from phenyl phosphate to tert-butyl alcohol in acetonitrile. This reaction was shown to proceed with almost complete racemization, in agreement with the results of this present study.

In the accompanying paper, the results of positional isotope exchange experiments complementary to the stereochemical study reported here are discussed. It is argued that the data would most support a preassociative stepwise mechanism for the phosphoryl transfer from ADP to alcohols in acetonitrile.

Acknowledgment. We thank the SERC for support and Professor Knowles for providing the results of his study prior to publication.

Positional Isotope Exchange in Adenosine $5^{\prime}-\left[\beta-{ }^{18} \mathrm{O}_{4}\right]$ Diphosphate and the Possible Role of Monomeric Metaphosphate

Gordon Lowe* and Simon P. Tuck

The Dyson Perrins Laboratory, Oxford University South Parks Road, Oxford, England OX1 3QY Received September 30, 1985

Since monomeric metaphosphate $\left(\mathrm{PO}_{3}^{-}\right)$was first postulated as an intermediate in the hydrolysis of monosubstituted phosphates 30 years ago, ${ }^{1}$ much evidence has accumulated which is consistent with its intervention. ${ }^{2}$ However, stereochemical analysis of the products formed when phenyl, 2,4-dinitrophenyl, and creatine $\left[{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right]-(R)$-phosphate were solvolysed in aqueous methanol under conditions where the intermediacy of monomeric metaphosphate had been invoked ${ }^{2}$ showed that phosphoryl transfer proceeds with inversion. ${ }^{3}$ Likewise, in the Conant-Swan fragmentation of 1,2 -dibromo-2-phenylethyl $\left[{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right]-(R)$ phosphonate dianion, a reaction also considered to proceed by way of a metaphosphate intermediate, ${ }^{4}$ phosphoryl transfer to an alcohol acceptor was also found to proceed with inversion. ${ }^{5}$ The apparent conflict between the kinetic ${ }^{2}$ and stereochemical evidence ${ }^{3,5}$ can be reconciled, however, in terms of a preassociative mechanism. ${ }^{6}$ In an attempt to provide a more sensitive probe of events occurring within the solvent cage during phosphoryl transfer reactions we have undertaken positional isotope exchange experiments with adenosine $5^{\prime}-\left[\beta-{ }^{-18} \mathrm{O}_{4}\right]$ diphosphate, prepared from adenosine 5^{\prime}-phosphomorpholidate and mono(tri- n-butylammonium) $\left[{ }^{18} \mathrm{O}_{4}\right.$]phosphate. ${ }^{7}$

The $\mathrm{p} K_{\mathrm{a}}$ values of the diphosphate moiety of ADP are $<1,3.9$, and 6.4. ${ }^{8}\left[\beta_{-18}^{18} \mathrm{O}_{4}\right] \mathrm{ADP}$ was incubated in tris- HCl aqueous buffer (20 mM), in the presence of (a) $\mathrm{MgCl}_{2}(0.5 \mathrm{M}$) and (b) EDTA $(10 \mathrm{mM})$ at $\mathrm{pH} 5,6,7,8$, and 9 for 3 weeks at $20^{\circ} \mathrm{C}$, by which

[^0]

Figure 1. ${ }^{31} \mathrm{P}$ NMR spectrum (101.232 MHz) of P_{α} of the recovered isotopically labeled ADP after incubation of $\left[\beta-{ }^{18} \mathrm{O}_{4}\right]$ ADP (87 atom $\%$ ${ }^{18} \mathrm{O}$ per site) in acetonitrile at $70^{\circ} \mathrm{C}$ for 48 h . Assignments are 1 , all species unlabeled at $\mathrm{P}_{\alpha} ; 2$, all species with ${ }^{18} \mathrm{O}$ in $\mathrm{P}_{\alpha}-\mathrm{O}-\mathrm{P}_{\beta}$ bridge; 3, all species with ${ }^{18} \mathrm{O}$ in nonbridging sites at P_{α}. The chemical shift reference is trimethyl phosphate.
time approximately 20% [β - $^{18} \mathrm{O}_{4}$]ADP had been hydrolyzed to $\left[{ }^{18} \mathrm{O}\right]$ AMP and $\left[{ }^{18} \mathrm{O}_{3}\right] \mathrm{P}_{\mathrm{i}}$. The high-resolution ${ }^{31} \mathrm{P}$ NMR spectrum (101.232 MHz) of the recovered $\left[{ }^{18} \mathrm{O}_{4}\right.$] ADP showed no evidence of positional ${ }^{18} \mathrm{O}$ exchange between the $\mathrm{P}_{\beta}-\mathrm{O}-\mathrm{P}_{\alpha}$ bridge and the nonbridging sites at P_{α} in either experiment.

Ramirez et al. have shown that ATP and ADP phosphorylated hindered alcohols ($\mathrm{Pr}-i-\mathrm{OH}$ and $\mathrm{Bu}-t-\mathrm{OH}$) when incubated in acetonitrile at $70^{\circ} \mathrm{C}$ and have proposed the intermediacy of monomeric metaphosphate. ${ }^{9} \quad\left[\beta-{ }^{18} \mathrm{O}_{4}\right]$ ADP tris(tetra- n-butylammonium) salt was incubated alone in dry acetonitrile at $70^{\circ} \mathrm{C}$ in a drybox and after 2 days the four components present were separated by HPLC and identified as AMP, ADP, adenosine $2^{\prime}, 5^{\prime}$-biphosphate (pAp), and adenosine 2^{\prime}-phospho- 5^{\prime}-diphosphate (ppAp). High-resolution ${ }^{31}$ P NMR spectroscopy showed the AMP to be singly ${ }^{18} \mathrm{O}$ labeled and the pAp and ppAp to be triply ${ }^{18} \mathrm{O}$ labeled at the 2^{\prime}-phosphate group. The high-resolution ${ }^{31} \mathrm{P}$ NMR spectrum of the recovered ADP (and the ppAp) showed that extensive ${ }^{18} \mathrm{O}$ exchange from the $\mathrm{P}_{\beta}-\mathrm{O}-\mathrm{P}_{\alpha}$ bridge to the nonbridging site at P_{α} had occurred (Figure 1).

The possibility that the positional isotope exchange had occurred by $\mathrm{P}_{\beta}{ }^{18} \mathrm{O}_{3}$ transfer from $\left[\beta-{ }^{18} \mathrm{O}_{4}\right]$ ADP to $\left[{ }^{18} \mathrm{O}\right]$ AMP formed in situ was excluded by a control experiment in which $\left[{ }^{18} \mathrm{O}_{2}\right]$ AMP was incubated with unlabeled ADP (as their tetra- n-butylammonium salts) in acetonitrile at $70^{\circ} \mathrm{C}$ for 12 h by which time about 60% of the ADP had been converted to other products. The recovered ADP remained completely unlabeled demonstrating that ADP does not transfer $\mathrm{P}_{8} \mathrm{O}_{3}$ to the phosphate moiety of AMP, presumably owing to electrostatic repulsion.

Failure to observe positional isotope exchange in $\left[\beta-{ }^{18} \mathrm{O}_{4}\right]$ ADP (or its Mg^{2+} complex) after incubation as its di- and trianion in aqueous solution is consistent with a preassociative concerted
(9) Ramirez, F.; Maracek, J. F. Pure Appl. Chem. 1980, 52, 2213-2327; 1021-1045. Ramirez, F.; Maracek, J. F.; Szamosi, J. J. Org. Chem. 1980, 45, 4748-4752.
mechanism. The preassociative stepwise mechanism only remains tenable if one assumes that the lifetime of the putative intermediate [$\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{PO}_{3} \cdot$-AMP] complex is so short that it always collapses back to starting material faster than rotation about the $\mathrm{O}_{3} \mathrm{P}-\mathrm{O}$ bond of AMP can occur within the complex.

Positional isotope exchange of $\left[\beta_{-}{ }^{18} \mathrm{O}_{4}\right]$ ADP in acetonitrile is consistent with the preassociative stepwise mechanism, the [$\left.\mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{PO}_{3} \cdot \cdot \mathrm{AMP}\right]$ complex collapsing back to the $\mathrm{CH}_{3} \mathrm{CN}$. ADP encounter complex faster than acetonitrile can diffuse from it. The possibility that the product $\left[\mathrm{CH}_{3} \mathrm{CN}^{+}-\mathrm{PO}_{3}{ }^{2-}\right.$. AMP] complex (which would be the same for both the concerted and stepwise mechanism) is responsible for allowing positional isotope exchange to occur thereby introducing mechanistic ambiguity is, however, difficult to rigorously exclude although the control experiment suggests that the lifetime of the $\left[\mathrm{CH}_{3} \mathrm{CN}^{+}-\mathrm{PO}_{3}{ }^{2-}\right.$-AMP] is too short for phosphoryl transfer to the phosphate group of AMP to occur.

The above observations suggest that when water or an alcohol preassociates with ADP (and presumably other monosubstituted phosphates) a concerted transfer of the phosphoryl group is likely leading to inversion of configuration, although the possibility of a stepwise mechanism occurring especially if the leaving group has an exceptionally low $\mathrm{p} K_{\mathrm{a}}$ cannot be excluded. If, however, preassociation occurs with a weak nucleophile such as acetonitrile, ethers, etc. which cannot form a stable phosphorylated product. the extent to which it can compete with the ultimate acceptor will determine the degree of racemization observed in stereochemical experiments. As reported in the preceding paper, incubation of adenosine $5^{\prime}-\left[\beta-{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right]-(S)$-diphosphate as its trianion in acetonitrile with 2-O-benzyl-(S)-propane-1,2-diol as the ultimate acceptor leads to almost complete racemization with a small degree of retention. ${ }^{10}$ This observation suggests that the ultimate product is formed by way of $\mathrm{CH}_{3} \mathrm{CN}^{+}-\left[{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right] \mathrm{PO}_{3}{ }^{2-}$ and that the $\left[{ }^{16} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right] \mathrm{PO}_{3}{ }^{-}$moiety is usually transferred to other acetonitrile molecules before it is captured by the ultimate acceptor, but it is also possible that the ($\left.\mathrm{CH}_{3} \mathrm{CN} \cdot\left[{ }^{[6} \mathrm{O},{ }^{17} \mathrm{O},{ }^{18} \mathrm{O}\right] \mathrm{PO}_{3}{ }^{-} \cdot \mathrm{AMP}\right)$ complex on the stepwise pathway has a lifetime long enough for the $\left[{ }^{16} \mathrm{O},{ }^{19} \mathrm{O},{ }^{18} \mathrm{O}\right] \mathrm{PO}_{3}{ }^{-}$moiety to tumble and contribute to racemization.
(10) Cullis, P. M.; Rouf, A. J. Am. Chem. Soc. 1986, 108, preceding paper in this issue.

Resonance in \mathbf{C}_{60}, Buckminsterfullerene ${ }^{\dagger}$

D. J. Klein,* T. G. Schmalz, G. E. Hite, and W. A. Seitz

Theoretical Chemical Physics Group
Department of Marine Sciences Texas A\&M University at Galveston

Galveston, Texas 77553
Received October 25, 1985
Recently Kroto et al. ${ }^{1}$ have found that laser vaporization of graphite in a high-pressure supersonic nozzle produces a remarkably stable C_{60} molecule in high yield. It was argued that this new species takes the form of a truncated icosahedron with C atoms at each of the vertices and σ-bonds along each edge, and in recognition of Buckminster Fuller's studies of such (geodes-ic-dome-like) structures the name buckminsterfullerene was suggested. The remaining π-bonds delocalized through resonance were presumed to account for the indicated high stability. Here we report energy calculations for this soccerball-like structure via quantitative resonance theories and make comparisons to simple Hückel MO results.

The proposed structure has icosahedral symmetry including inversion, $I_{h}=I \times C_{i}$ so that the Hückel molecular orbitals are

[^1]Table I. Orbital Energies and Symmetries ${ }^{a}$

		-
A	-3.000	-
F_{1}	+0.382	$-2.757,+0.139$
$\mathrm{~F}_{2}$	+2.618	$-1.820 .+1.438$
G	$-1.000,+2.000$	$-1.562,+2.562$
H	$-2.303,-1.000,+1.303$	$-0.618,+1.618$

${ }^{a}$ In units of $|\beta|$, with $\alpha=0$.
Table II. Various Resonance Energies for Several Species

	Hückel MO, β	Kekulë count, ${ }^{\mathbf{a}} \mathbf{~ J}$	conjugated circuit, ${ }^{b} \mathrm{eV}$
C_{60}			
\quad uncorrected	0.553	-0.178	-0.120
\quad corrected	0.509	-0.150	-0.101
benzene	0.333	-0.131	-0.140
pentacene	0.388	-0.092	-0.084
coronene	0.440	-0.141	-0.146
graphite	0.575	-0.183	-0.168

${ }^{a}$ Calculated from eq 4, ref 3 b , as corrected: Chem. Phys. Lett. 1985; 118, 1101. ${ }^{6}$ Calculated from eq 1, truncated after 10 cycles, R_{1} $=-0.841 \mathrm{eV}, R_{2}=-0.336 \mathrm{eV}$.
labeled by irreducible representations of I and C_{i}. The orbital energies of these various symmetries appear in Table I. The A, $\mathrm{F}_{1}, \mathrm{~F}_{2}$, G, and H representations of I yield 1-, 3-, 3-, 4-, and 5 -fold degeneracies of the associated levels (so that overall there are 30 antibonding and 30 bonding π-MO's). The + and - labels identify the C_{i} symmetry.

The number of Kekule structures for this molecular species provides another indication of its stability. We have carried out this enumeration via a recently implemented transfer matrix technique ${ }^{2}$ and find that there are (exactly) $K=12500$ Kekulé structures. The logarithm of such a count has been argued ${ }^{3}$ to be proportional to the resonance energy. Pauling bond orders ${ }^{4}$ may be obtained by taking the ratio of the number of Kekule structures with a double bond between a particular pair of atoms to K. This leads to bond orders of $7 / 25$ for edges separating pentagonal and hexagonal faces and $11 / 25$ for edges separating two hexagonal faces.

We also apply the Herndon-Simpson resonance theory ${ }^{5}$ (with an underlying valence-bond rationale) or the conjugated-circuit method ${ }^{6}$ (with an empiric rationale related to Clar's ${ }^{7}$ ideas). In these methods the resonance energy is given as a ratio H / K, with

$$
\begin{equation*}
H=\sum_{n \geq 1}\left\{\#^{2 n+2} R_{n}+\#^{2 n} Q_{n}\right\} \tag{1}
\end{equation*}
$$

where the R_{n} and Q_{n} are (exchange matrix element) parameters and $\#^{2 m}$ is the sum over the number of conjugated $2 m$ circuits in the various Kekule structures. (Here a conjugated $2 m$ circuit in a Kekulé structure is a length $2 m$ cycle with alternating single and double bonds.) Again utilizing the transfer matrix approach ${ }^{2}$ we obtain $\#^{6}=83160, \#^{8}=0, \#^{10}=59760, \#^{12}=50880$, and $\#^{14}=44760$.

Computation of explicit resonance energy estimates requires consideration of the effects of the molecule's nonplanarity upon the model parameters. The angle between nearest-neighbor sites (and hence the twist angle between π-orbitals oriented normal to the "sphere" surface) as measured from the center of the cage is $\cong 23^{\circ}$ if all the bond lengths are similar. Thence the overlap and one-electron resonance integrals should be reduced from their ordinary planar values by a factor $\cong \cos 23^{\circ} \cong 0.92$. Likewise two-electron exchange integrals should be reduced by a factor \cong

[^2]
[^0]: (1) Butcher, W. W.; Westheimer, F. H. J. Am. Chem. Soc. 1955, 77, 2420-2424. Barnard, P. W. C.; Bunton, C. A.; Llewellyn, D. R.; Oldham, K. G.; Silver, B. L.; Vernon, C. A. Chem. Ind. (London) 1955, 760-763.
 (2) Di Sabato, G.; Jencks, W. P. J. Am. Chem. Soc. 1961, 83, 4400-4405. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1964, 86, 1410-1417. Kirby, A. J.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87, 3209-3216. Kirby, A. J.; Varvoglis, A. G. J. Am. Chem. Soc. 1967, 89, 415-423. Gorenstein, D. G.; Lee, Y.-G.; Kar, D. J. Am. Chem. Soc. 1977, 99, 2264-2267. For reviews, see: Benkovic, S. J.; Schray, K. J. In "Transition States of Biochemical Processes"; Gandour, R. D.; Schowen, R. L., Eds.; Plenum Press: New York and London, 1978; pp 493-527. Westheimer, F. H. Chem. Rev. 1981, 81, 313-326.
 (3) Buchwald, S. L.; Knowles, J. R. J. Am. Chem. Soc. 1982, 104, 1438-1440. Buchwald, S. L., Friedman, J. M.; Knowles. J. R. J. Am. Chem. Soc. 1984, 106, 4911-4916.
 (4) Kenyon, G. L.; Westheimer, F. H. J. Am. Chem. Soc. 1966, 88, 3557-3561; 3561-3565. Satterthwait, A. C., Westheimer, F. H. J. Am. Chem. Soc. 1980, 102, 4464-4472; 1981, 103, 11177-1180. Calvo, K. C.; Westheimer, F. H. J. Am. Chem. Soc. 1983, 105, 2827-2831; 1984, 106, 4205-4210
 (5) Calvo, K. C. J. Am. Chem. Soc. 1985, 107, 3690-3694.
 (6) Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375.
 (7) Wehrli, W. E.; Verheyden, D. L. M.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87, 2265-2277.
 (8) Dawson, R. M. C.; Elliott, D. C.; Elliott, W. H.; Jones, K. M. "Data for Biochemical Research"; Oxford University Press: London, 1982; pp 146-148.

[^1]: ${ }^{\dagger}$ Research supported by the Robert A. Welch Foundation of Houston, Texas.
 (1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature (London) 1985, 318, 162-163.

[^2]: (2) Klein, D. J.; Hite, G. E.; Schmalz, T. G. J. Comput. Chem., in press.
 (3) (a) Swinbourne-Sheldrake, R.; Herndon, W. C.; Gutman, I. Tetrahedron Lett. 1975, 755-758. (b) Seitz, W. A.; Klein, D. J.; Schmalz, T. G.; Garciä-Bach, M. A. Chem. Phys. Lett. 1985, 115, 139-143.
 (4) Pauling, L. "The Nature of the Chemical Bond", 3rd ed.; Cornell University Press: 1960
 (5) (a) Herndon, W. C. J. Am. Chem. Soc. 1973, 95, 2404-2406. (b) Herndon, W. C.; Ellzey, M. L., Jr. J. Am. Chem. Soc. 1974, 96, 6631-6642. (6) (a) Randic, M. Tetrahedron 1975, 31, 1477-1481. (b) Randic, M.; Trinajstic, N. J. Am. Chem. Soc. 1984, 106, 4428-4434.
 (7) Clar, E. "The Aromatic Sextet"; Wiley: New York, 1972.

